Đáp án
1A
2A
3C
4B
5D
6B
7C
8B
9B
10A
11C
12D
13D
14A
15D
16C
17D
18B
19B
20B
21C
22B
23C
24D
25C
26C
27B
28C
29B
30C
31C
32D
33B
34B
35C
36A
37D
38B
39C
40A
41A
42D
43D
44A
45B
46D
47D
48B
49C
50B
Đáp án Đề minh họa số 6 thi Tốt Nghiệp Trung học Phổ Thông 2024 môn Toán học
Câu 1 [255896]: Cho hàm số bậc bốn có đồ thị là đường cong trong hình bên. Điểm cực tiểu của hàm số đã cho là
227.PNG
A,
B,
C,
D,
Hàm số có các điểm cực trị là trong đó là điểm cực đại và là các điểm cực tiểu. Chọn đáp án A.
Câu 2 [255897]: Cho khối nón có diện tích đáy và chiều cao Thể tích của khối nón đã cho bằng
A,
B,
C,
D,
Ta có . Chọn đáp án A.
Câu 3 [352441]: bằng
A,
B,
C,
D,
Đặt






Câu 4 [255901]: Với là số thực dương tùy ý, bằng
A,
B,
C,
D,
. Chọn đáp án B.
Câu 5 [255899]: Cho Mệnh đề nào dưới đây đúng?
A,
B,
C,
D,
Ta có . Chọn đáp án D.
Câu 6 [255900]: Trong không gian cho đường thẳng Điểm nào dưới đây thuộc
A,
B,
C,
D,
Lần lượt thay tọa độ các điểm vào phương trình đường thẳng, thấy . Chọn đáp án B.
Câu 7 [255902]: Số phức nào dưới đây có phần thực bằng phần thực của số phức ?
A,
B,
C,
D,
Ta có Chọn đáp án C.
Câu 8 [255903]: Cho cấp số nhân với và công bội Số hạng tổng quát bằng
A,
B,
C,
D,
CTTQ cấp số nhân số hạng thứ : với là công bội Áp dụng, ta có . Chọn đáp án B.
Câu 9 [255916]: Cho hàm số có bảng biến thiên như sau
229.PNG
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
A,
B,
C,
D,
Hàm số đồng biến trên các khoảng Chọn đáp án B.
Câu 10 [255904]: Trong không gian cho hai vectơ Vectơ có tọa độ là
A,
B,
C,
D,
. Chọn đáp án A.
Câu 11 [255905]: Nếu thì bằng
A,
B,
C,
D,

. Chọn đáp án C.
Câu 12 [255917]: Tập xác định của hàm số
A,
B,
C,
D,
Tập xác định của hàm số Chọn đáp án D.
Câu 13 [255907]: Cho hàm số có bảng biến thiên như sau
228.PNG
Số giao điểm của đồ thị hàm số và đường thẳng
A,
B,
C,
D,
. Vẽ đường thẳng cùng với đồ thị hàm số , ta thấy chúng giao nhau tại 2 điểm phân biệt. Chọn đáp án D.
Câu 14 [255908]: Trong không gian đường thẳng song song với mặt phẳng có một vectơ chỉ phương là
A,
B,
C,
D,
Mặt phẳng có một vecto pháp tuyến là . Gọi là một vecto chỉ phương của đường thẳng . Đường thẳng song song mặt phẳng
Chọn đáp án A.
Câu 15 [282793]: Tập hợp tất cả các điểm biểu diễn các số phức thỏa mãn là đường tròn có tâm là
A,
B,
C,
D,
Ta có

Suy ra tập hợp tất cả các điểm biểu diễn các số phức là đường tròn có tâm
Chọn đáp án D.
Câu 16 [255909]: Cho khối chóp có chiều cao bằng đáy là hình bình hành có diện tích bằng Thể tích khối chóp bằng
A,
B,
C,
D,
Ta có
Chọn đáp án C.
Câu 17 [282782]: Cho hàm số Khẳng định nào dưới đây đúng?
A,
B,
C,
D,
Ta có
Chú ý:
Chọn đáp án D.
Câu 18 [255911]: Phần ảo của số phức bằng
A,
B,
C,
D,
Phần ảo của . Chọn đáp án B.
Câu 19 [255913]: Trong không gian cho mặt cầu Tâm của có tọa độ là
A,
B,
C,
D,
Tâm mặt cầu có tọa độ là
Áp dụng, ta có là tâm của mặt cầu. Chọn đáp án B.
Câu 20 [255912]: Nếu thì bằng
A,
B,
C,
D,
. Chọn đáp án B.
Câu 21 [255921]: Có bao nhiêu cách chọn học sinh từ một tổ gồm học sinh?
A,
B,
C,
D,
Số cách chọn học sinh từ một tổ gồm học sinh là Chọn đáp án C.
Câu 22 [282761]: Tập nghiệm của bất phương trình
A,
B,
C,
D,
HD: Ta có
Chọn đáp án B.
Câu 23 [255919]: Hàm số nào dưới đây có bảng biến thiên như sau?
230.PNG
A,
B,
C,
D,
Cách nhìn nhanh: Nhận thấy hàm số có dạng hàm bậc 3:
Lại có . Chọn đáp án C.
Câu 24 [255920]: Đồ thị hàm số có bao nhiêu đường tiệm cận đứng?
A,
B,
C,
D,
Đồ thị hàm số có 2 đường TCĐ là .
Chọn đáp án D.
Câu 25 [255918]: Cho điểm nằm trong mặt cầu Khẳng định nào dưới đây đúng?
A,
B,
C,
D,
Điểm nằm trong mặt cầu .
Điểm nằm ngoài mặt cầu .
Điểm nằm trên mặt cầu .
Chọn đáp án C.
Câu 26 [349032]: Phương trình có tổng các nghiệm bằng
A,
B,
C,
D,
Điều kiện:
Ta có



Đối chiếu điều kiện: ta được
Chọn đáp án C.
Câu 27 [255922]: Cho hàm số có đồ thị là đường cong trong hình bên. Giá trị cực đại của hàm số bằng
231.PNG
A,
B,
C,
D,
Giá trị cực đại của hàm số bằng .
Đồ thị hàm số có được từ bằng cách tịnh tiến xuống bên dưới đơn vị.
Suy ra giá trị cực đại của hàm số bằng .
Chọn đáp án B.
Câu 28 [255923]: Cho khối lăng trụ tam giác đều và khối lăng trụ tứ giác đều, có tất cả các cạnh bằng nhau và có thể tích lần lượt là Tỉ số bằng
A,
B,
C,
D,
Thể tích khối lăng trụ tam giác đều:
Thể tích khối lăng trụ tứ giác đều: . Chọn đáp án C.
Câu 29 [255933]: Trong không gian cho điểm và mặt phẳng Đường thẳng đi qua và vuông góc với có phương trình là
A,
B,
C,
D,
Đường thẳng đi qua và vuông góc với có một vecto chỉ phương
Phương trình đường thẳng .
Chọn đáp án B.
Câu 30 [349033]: Cho Khẳng định nào dưới đây đúng?
A,
B,
C,
D,
Ta có
Suy ra
Vậy
Chọn đáp án C.
Câu 31 [255925]: Cho hàm số có đồ thị là đường cong trong hình bên. Có bao nhiêu giá trị nguyên của tham số để phương trình nghiệm phân biệt trong đó có đúng hai nghiệm lớn hơn ?
232.PNG
A,
B,
C,
D,
Nếu , phương trình nghiệm
Nếu , phương trình nghiệm phân biệt
Nếu , phương trình nghiệm
Nếu , phương trình nghiệm
Nếu , phương trình có nghiệm phân biệt, trong đó chỉ có một nghiệm lớn hơn .
Vậy không có giá trị nguyên của thỏa mãn. Chọn đáp án C.
Câu 32 [255926]: Cho hình lập phương Giá trị cosin của góc giữa đường thẳng và mặt phẳng bằng
A,
B,
C,
D,
Ta có nên . Chọn đáp án D.
Câu 33 [255927]: Cho hàm số có đạo hàm với mọi Hàm số đã cho đồng biến trên khoảng nào dưới đây?
A,
B,
C,
D,
Ta có
Chọn đáp án B.
Câu 34 [255930]: Gọi là hai nghiệm phức của phương trình Khi đó bằng
A,
B,
C,
D,
Áp dụng hệ thức Vi – ét, ta có:
. Chọn đáp án B.
Câu 35 [349034]: Cho là hai số thực dương tùy ý và Khẳng định nào dưới đây đúng?
A,
B,
C,
D,
Ta có



Chọn đáp án C.
Câu 36 [255932]: Cho hình lăng trụ tam giác đều có cạnh đáy bằng Khoảng cách từ đến mặt phẳng bằng
A,
B,
C,
D,
Kẻ , có
Chọn đáp án A.
366.PNG
Câu 37 [255931]: Trong không gian cho điểm Gọi là hình chiếu của trên trục Phương trình của mặt cầu tâm bán kính
A,
B,
C,
D,
Hình chiếu của trên trục là điểm ,
Phương trình của mặt cầu tâm bán kính là: Chọn đáp án D.
Câu 38 [255928]: Chọn ngẫu nhiên một số từ tập hợp các số tự nhiên thuộc đoạn Xác suất để chọn được số có chữ số hàng đơn vị nhỏ hơn chữ số hàng chục bằng
A,
B,
C,
D,
Các số thỏa mãn là: . Vậy có tổng cộng 10 số.
Có tổng cộng 21 số tự nhiên thuộc đoạn Xác suất để chọn được số có chữ số hàng đơn vị nhỏ hơn chữ số hàng chục bằng
Chọn đáp án B.
Câu 39 [349035]: Cho hàm số có đạo hàm liên tục trên thỏa mãn khi đó bằng
A,
B,
C,
D,
Đặt

Nhân cả hai vế của giả thiết với ta được





Vậy
Chọn đáp án C.
Câu 40 [255936]: Trong không gian cho đường thẳng và mặt phẳng Gọi là đường thẳng nằm trong cắt và vuông góc với Tọa độ giao điểm của và mặt phẳng
A,
B,
C,
D,
Gọi , ta có . .
Suy ra .
Vecto pháp tuyến của , vecto chỉ phương của .
nên vecto pháp tuyến của .
Phương trình đường thẳng là: .
Gọi giao điểm của và mặt phẳng . . Chọn đáp án A.
Câu 41 [349036]: Cho hàm số có đạo hàm Có bao nhiêu giá trị nguyên của tham số để hàm số đồng biến trên khoảng ?
A,
B,
C,
D,
Đặt nên
Ta có




Chọn đáp án A.
Câu 42 [255937]: Có bao nhiêu số phức thỏa mãn điều kiện là số thuần ảo?
A,
B,
C, Vô số.
D,
Đặt khi đó
Ta có
là số thuần ảo
Khi và chỉ khi
Do đó


Kết hợp với điều kiện
Chọn đáp án D.
Câu 43 [255938]: Cho hình chóp có mặt phẳng đồng thời vuông góc với hai mặt phẳng đường thẳng tạo với một góc Diện tích của mặt cầu ngoại tiếp hình chóp đã cho bằng
A,
B,
C,
D,
Ta có
Áp dụng định lý sin trong tam giác , ta có:

Chọn đáp án D.
367.PNG
Câu 44 [349037]: Gọi là tập hợp các giá trị nguyên tham số để bất phương trình nghiệm đúng với mọi Số phần tử của
A,
B,
C,
D,
Điều kiện:

Đặt
Khi đó bất phương trình trở thành:




Vậy
Chọn đáp án A.
Câu 45 [255940]: Cho hình hộp chữ nhật có đáy là hình vuông cạnh chiều cao Gọi là trung điểm của Thể tích của khối đa diện bằng
A,
B,
C,
D,
Chọn hệ trục tọa độ như hình vẽ, đặt , ta có: . .
Thể tích khối đa diện bằng: .
Chọn đáp án B.
368.PNG
Câu 46 [349038]: Cho hàm số thỏa mãn với mọi Biết Diện tích của hình phẳng giới hạn bởi các đường bằng
A,
B,
C,
D,
Ta có





Do đó
Diện tích hình phẳng cần tính là

Chọn đáp án D.
Câu 47 [255943]: Cho số phức thỏa mãn Khi biểu thúc đạt giá trị nhỏ nhất thì bằng
A,
B,
C,
D,
Ta có

Đặt
.

Đẳng thức xảy ra khi
.
Chọn đáp án D.
Câu 48 [349039]: Cho hàm số bậc bốn có bảng biến thiên như hình sau:
10621132.png
Có bao nhiêu giá trị nguyên của tham số để phương trình có ít nhất nghiệm?
A,
B,
C,
D, Vô số.
Dựa vào bảng biến thiên, ta được
Xét

Đặt nên

Từ đó lập BBT của hàm số để có ít nhất 6 nghiệm thì
P/s: các em học sinh xem BBT ở video chữa nha!
Chọn đáp án B.
Câu 49 [255941]: Trong không gian cho mặt cầu và hai điểm Mặt phẳng đi qua và cắt theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Giá trị của bằng
A,
B,
C,
D,
Đường tròn giao tuyến có bán kính là: .
Mặt phẳng đi qua
.
.
Xét trên , ta có.
khi . Khi đó .
Chọn đáp án C.
Câu 50 [282804]: Có bao nhiêu số nguyên sao cho ứng với mỗi tồn tại thỏa mãn ?
A,
B,
C,
D,
Xét trên khoảng
nên ta phải có .
Ta có , suy ra hàm số đồng biến trên .
Để có nghiệm .
Điều kiện đủ:
Với ta có nên có nghiệm .
Với ta có nên có nghiệm .
Vậy , có tất cả 8 số nguyên thỏa mãn. Chọn đáp án B.